Lecture: 3-6 Derivatives of Logarithmic Functions

Review: Derivatives of Exponential Functions:

- $\frac{d}{d x} e^{x}=\underline{\boldsymbol{e}^{\boldsymbol{X}}}$
- $\frac{d}{d x} a^{x}=\ln \boldsymbol{a} \cdot \boldsymbol{a}^{x}$

Example 1: Find a formula for the derivatives of the following functions.

(a) $y=\ln x$

$$
e^{y}=e^{\ln x}
$$

$$
e^{y}=x
$$

$$
e^{y} \frac{d y}{d x}=1
$$

Derivatives of Logarithmic Functions:

- $\frac{d}{d x} \ln x=\mathbf{Y}$

$$
\begin{aligned}
\text { (b) } y & =\log _{b} x \\
b^{y} & =b^{\log _{b} x} \\
b^{y} & =x
\end{aligned}
$$

$$
b^{y} \ln b \frac{d y}{d x}=1
$$

$$
\frac{d y}{d x}=\frac{1}{\ln b \cdot b^{y}}=\frac{1}{\ln b) x}
$$

Example 2: Find derivatives of the following functions.
(a) $y=\ln \left(4 x^{2}+5\right)$

$$
\begin{aligned}
y^{\prime} & =\frac{1}{4 x^{2}+5} \cdot \frac{d}{d x}\left(4 x^{2}+5\right) \\
& =\frac{1}{4 x^{2}+5} \cdot 8 x \\
& =\frac{8 x}{4 x^{2}+5}
\end{aligned}
$$

(b) $y=\ln (\tan x)$

$$
\begin{aligned}
y^{\prime} & =\frac{1}{\tan x} \cdot \frac{d}{d x} \tan x \\
& =\frac{\sec ^{2} x}{\tan x}
\end{aligned}
$$

Example 3: Find derivatives of the following functions.
(a) $f(x)=\log _{10} \sqrt{x}$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{\ln 10 \sqrt{x}} \cdot \frac{d}{d x} \sqrt{x} \\
& =\frac{1}{\ln 10 \sqrt{x}} \cdot \frac{1}{2} x^{-1 / 2} \\
& =\frac{1}{\ln 10 \sqrt{x}} \cdot \frac{1}{2 \sqrt{x}}=\frac{1}{2 \ln 10 x}
\end{aligned}
$$

(b) $g(x)=\log _{2}(\cos x)$

$$
\begin{aligned}
g^{\prime}(x) & =\frac{1}{\ln 2 \cos x} \cdot(-\sin x) \\
& =\frac{-\tan x}{\ln 2}
\end{aligned}
$$

Example 4: Differentiate f and find the domain of f^{\prime}.

$$
\begin{aligned}
& \text { (a) } \begin{aligned}
f(x) & =\sqrt{5+\ln x}=(5+\ln x)^{1 / 2} \\
& =\frac{1}{f^{\prime}(x)} \\
= & \frac{1}{2 \sqrt{5+\ln x}} \\
& =\frac{1}{\frac{1}{2 x \sqrt{5+\ln x}}}
\end{aligned}
\end{aligned}
$$

$$
\text { (b) } f(x)=\frac{x}{1-\ln (x+1)}
$$

need $x>0$ and $5+\ln x>0$ for $\ln x$
case 1 (a) $y=\ln |x|$.
if $x>0$ (positive) then $|x|=x$ and $y=\ln |x|=\ln x ; y^{\prime}=1 / x$
if $x<0$ (neg) then $|x|=-x$
and $y=\ln |x|=\ln (-x) ; \quad y^{\prime}=\frac{1}{-x}(-1)=1 / x$
50 if $y=\ln |x|$;

$$
y^{\prime}=1 / x \quad \text { w/no abs! }
$$

(b) $f(x)=\ln |\sec x+\tan x|$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{\sec x+\tan x} \cdot \frac{d}{d x}(\sec x+\tan x) \\
& =\frac{\sec x \tan x+\sec ^{2} x}{\sec x+\tan x} \\
& =\frac{\sec x(\tan x+\sec x)}{\sec x+\tan x} \\
& =\sec x
\end{aligned}
$$

It is often easier to first use the rules of logarithms to expand a logarithmic expression before taking the derivative. To do this properly you first must recognize when these rules can be applied and apply them correctly.

Rules and Non-Rules for Logarithms

- $\ln (A B)=\frac{\ln A+\ln B}{\ln A}$
- $\ln (A / B)=\ln A-\ln B$
- $\ln \left(A^{r}\right)=r \ln \mathbf{A}$
- $\ln (A+B)=$ No rule $\neq \ln A+\ln B$
- $\ln (A-B)=$ No rule $\neq \ln A-\ln B$
- $(\ln A)^{r}=$ No rule $\neq r \ln A$

Example 6: Differentiate the following functions by first expanding the expressions using the rules for logarithms. Explain why this is the better way to proceed in each case.

$$
\begin{aligned}
\text { (a) } \left.\begin{array}{rl}
f(x) & =\ln \sqrt{5 x+2} \\
& =\ln (5 x+2)^{1 / 2} \\
& =\frac{1}{2} \ln (5 x+2) \\
f^{\prime}(x) & =\frac{1}{2} \cdot\left(\frac{1}{5 x+2}\right) \cdot 5 \\
& =\frac{5}{2(5 x+2)}
\end{array}\right) .
\end{aligned}
$$

would have had to chain
twice w/out ex passion
Example 7: Differentiate $f(x)=\ln \left(\frac{x\left(x^{2}+1\right)^{2}}{\sqrt{2 x^{4}-5}}\right)$

$$
\begin{aligned}
& f(x)=\ln x+2 \ln \left(x^{2}+1\right)-\frac{1}{2} \ln \left(2 x^{4}-5\right) \\
& f^{\prime}(x)=\frac{1}{x}+\frac{2}{x^{2}+1} \cdot 2 x-\frac{1}{2}\left(\frac{1}{2 x^{4}-5}\right) \cdot 8 x^{3} \\
& \quad=\frac{1}{x}+\frac{4 x}{x^{2}+1}-\frac{4 x^{3}}{2 x^{4}-5}
\end{aligned}
$$

Example 8: Differentiate the following functions.
(a) $f(x)=(\ln x)^{5}$
(b) $f(x)=\ln \left(x^{5}\right)$

$$
\begin{aligned}
f^{\prime}(x) & =5(\ln x)^{4} \cdot 1 / x \\
& =\frac{5(\ln x)^{4}}{x}
\end{aligned}
$$

Logarithmic Differentiation
w/out expansion:
$\left\{\begin{array}{l}\text { w/expansion } \\ f(x)=5 \ln x\end{array}\right.$

$$
\left.\begin{array}{rl}
f^{\prime}(x) & =\frac{1}{x^{5}} \cdot \frac{d}{d x} x^{5} \\
& =\frac{1}{x^{5}} \cdot 5 x^{4} \\
& =\frac{5}{x}
\end{array}\right\} \begin{aligned}
f^{\prime}(x) & =5 \cdot(1 / x) \\
&
\end{aligned}
$$

Finding derivatives of complicated functions involving products, quotients and powers can often be simplified using logarithms. This technique is called logarithmic differentiation.

Example 9: Find the derivative of $y=\frac{x^{7} \sqrt{x^{3}+1}}{(5 x+1)^{4}}$. \quad to find y^{\prime} you need to use the

$$
\begin{aligned}
& \ln y=\ln \left(\frac{x^{1} \sqrt{x^{3}+1}}{(5 x+1)^{4}}\right) \\
& \ln y=7 \ln x+\frac{1}{2} \ln \left(x^{3}+1\right)-4 \ln (5 x+1) \\
& \frac{1}{y} \frac{d y}{d x}=\frac{7}{x}+\frac{1}{2} \frac{1}{\left(x^{3}+1\right)} 3 x^{2}-\frac{4}{5 x+1} \cdot 5 \leftarrow \text { solve for } d y / d x
\end{aligned}
$$

$$
\frac{d y}{d x}=\left(\frac{7}{x}+\frac{3 x^{2}}{2\left(x^{3}+1\right)}-\frac{20}{5 x+1}\right) y \longleftarrow \text { input } y
$$

$$
\underbrace{\frac{d x}{d x}=\left(\frac{7}{x}+\frac{3 x^{2}}{2\left(x^{2}+1\right)^{2}}-\frac{20}{5 x+1}\right)\left(\frac{x^{7} \sqrt{x^{2}+1}}{(5+1)^{4}}\right)}
$$

If you don't input, your problem is wrong/ incomplete.

Derivative Rules: Let n and a be constants. (Note, there is no rule when there is a variable in the base and the exponent.)

- $\frac{d}{d x} x^{n}=\boldsymbol{n} \mathbf{x}^{\boldsymbol{n - 1}}$
- $\frac{d}{d x} a^{x}=\frac{(\ln \boldsymbol{a}) \boldsymbol{a}^{\boldsymbol{x}}}{}$
here the exponent is constant
When you have a variable in both the base and the exponent you must use
Logrithmic differentiation to find the derivative of the function.

Example 10: Find the derivatives of the following functions using logarithmic differentiation.

$$
\begin{aligned}
& \ln y=\ln x^{2 / x} \\
& \ln y=\frac{2}{x} \cdot \ln x \\
& \frac{1}{y} \frac{d y}{d x}=-2 x^{-2} \ln x+\frac{2}{x} \cdot \frac{1}{x} \\
& \frac{1}{y} \frac{d y}{d x}=-\frac{2 \ln x}{x^{2}}+\frac{2}{x^{2}} \\
& \frac{d y}{d x}=\left(\frac{2-2 \ln x}{x^{2}}\right) y \ln ^{2} x \\
& \text { (b) recall) } y=x^{2 / x} \\
& \ln y\left.=\ln (\ln x)^{\cos x} x\right) \cos x \\
& \ln y=\cos x \cdot \ln (\ln x) \\
& \frac{1}{y} \frac{d y}{d x}=-\sin x \cdot \ln (\ln x)+\cos x \cdot \frac{1}{\ln x} \cdot \frac{1}{x} \\
& \frac{d y}{d x}=\left(\frac{\cos x}{x \ln x}-\sin x \ln (\ln x)\right) y \\
&=\left(\frac{\cos x}{x \ln x}-\sin x \ln (\ln x)\right)(\ln x)
\end{aligned}
$$

Example 11: Find an equation of the tangent line to $f(x)=\ln (x+\ln x)$ at $x=1$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{x+\ln x} \cdot \frac{d}{d x}(x+\ln x) \\
& =\frac{1}{x+\ln x} \cdot(1+1 / x) \\
m & =\frac{1}{1+\ln 1}(1+y / 1) \\
m & =2 \\
x=1, y & =f(1)=\ln (1+\ln 1)=\ln \mid=0 \\
y-0 & =2(x-1) \quad y=2 x-2
\end{aligned}
$$

Example 12: Let $f(x)=c x+\ln (\sin x)$. For what value of c is $f^{\prime}(\pi / 4)=6$?

$$
\begin{aligned}
& f^{\prime}(x)=c+\frac{1}{\sin x} \cdot \cos x \\
& f^{\prime}(x)=c+\cos x / \sin x \\
& 6=c+\frac{\cos \pi / 4}{\sin \pi / 4} \\
& 6=c+1 \\
& c=5
\end{aligned}
$$

