
LECTURE: 3-6 DERIVATIVES OF LOGARITHMIC FUNCTIONS

Review: Derivatives of Exponential Functions:

• d

dx

e

x

=

• d

dx

a

x

=

Example 1: Find a formula for the derivatives of the following functions.

(a) y = lnx

(b) y = log

b

x

Derivatives of Logarithmic Functions:

• d

dx

lnx =

• d

dx

log

b

x =

Example 2: Find derivatives of the following functions.

(a) y = ln(4x

2

+ 5)

(b) y = ln(tanx)
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Example 3: Find derivatives of the following functions.

(a) f(x) = log

10

p
x

(b) g(x) = log

2

(cosx)

Example 4: Differentiate f and find the domain of f 0.

(a) f(x) =

p
5 + lnx

(b) f(x) =

x

1� ln(x+ 1)

Example 5: Differentiate the following functions.

(a) y = ln |x|. (b) f(x) = ln | secx+ tanx|
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It is often easier to first use the rules of logarithms to expand a logarithmic expression before taking the derivative.
To do this properly you first must recognize when these rules can be applied and apply them correctly.

Rules and Non-Rules for Logarithms

• ln(AB) =

• ln(A/B) =

• ln(A

r

) =

• ln(A+B) =

• ln(A�B) =

• (lnA)

r

=

Example 6: Differentiate the following functions by first expanding the expressions using the rules for logarithms.
Explain why this is the better way to proceed in each case.

(a) f(x) = ln

p
5x+ 2

(b) g(x) = log

5

(x

2

p
x+ 1)

Example 7: Differentiate f(x) = ln

✓
x(x

2

+ 1)

2

p
2x

4 � 5

◆

UAF Calculus I 3 3-6 Derivatives of Logarithmic Functions

No rule t 1nA  HNB
In A  + In B

In A - In B NO rule t In A - 1h13

r In A No rule # r In A

= In 15×+442 = 2 logs X + tzlogslxtl )

=3 In 15×+4 9
'

4) T,n}T× + £4n¥l×H )

t 'n=±t¥t5 =en÷×E¥¥st±en÷#Fx

=u!€x =

421545k¥
no

Yndiharewnoatdehpaonnsain
= LIEGE

fl×)=1nX + z|n(×2+| ) - tz In (2×4-5)

fk " = 'T +

ftp.axzkl#).8x3=xt+x4*-4/2x4=



Example 8: Differentiate the following functions.

(a) f(x) = (lnx)

5 (b) f(x) = lnx

5

Logarithmic Differentiation

Finding derivatives of complicated functions involving products, quotients and powers can often be simpli-
fied using logarithms. This technique is called logarithmic differentiation.

Example 9: Find the derivative of y =

x

7

p
x

3

+ 1

(5x+ 1)

4

.
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Derivative Rules: Let n and a be constants. (Note, there is no rule when there is a variable in the base and the
exponent.)

• d

dx

x

n

=

• d

dx

a

x

=

When you have a variable in both the base and the exponent you must use

to find the derivative of the function.

Example 10: Find the derivatives of the following functions using logarithmic differentiation.

(a) y = x

2/x

(b) y = (lnx)

cos x
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Example 11: Find an equation of the tangent line to f(x) = ln(x+ lnx) at x = 1.

Example 12: Let f(x) = cx+ ln(sinx). For what value of c is f 0
(⇡/4) = 6?

UAF Calculus I 6 3-6 Derivatives of Logarithmic Functions

f 'an=×# . ¥ Cxtlnx )

= x.tn . ( It Yx )

m=
, # ( Hk )

m= 2

11=1
, y= fa ) = In ( Hlnl ) = IN =O

y.tl#y=@f'Cx)=ctg,.tng.aosX
-

f '
C x ) = C + cos '%in×

6 = c + cosy
sin T14

6= c + 1

cg


